
A Study of 802.11 Bitrate Selection in Linux
Robert Copeland

Department of Computer Science
Johns Hopkins University

Baltimore, Maryland 21218
Email: bobc@cs.jhu.edu

Abstract—This paper investigates rate adaptation in 802.11
wireless networks, with a focus on algorithms currently available
in the Linux operating system. The algorithms are compared
with a simple rate adaptation algorithm from the literature, and
modifications are presented that increase the performance of the
existing routines in the studied scenarios. In order to compare
simulated results with physical results, and to leverage the Linux
software ecosystem, a new software simulator based on a virtual
802.11 device is presented.

I. I NTRODUCTION

In 802.11 wireless networks, data may be transmitted with
any of a number of rates, from low-speed bitrates that are
resilient under poor channel conditions, to high-speed rates
that require a high signal level to function. The process of au-
tomatically selecting the rate that maximizes throughput,given
the current channel conditions, is known asrate adaptation[1]
and has been studied extensively.

The first published rate adaptation algorithm, Auto-Rate
Fallback (ARF), is an extremely simple state machine that
predicts the rate based on the most recent successful rate.
SampleRate [2] is a popular algorithm that builds a statistical
model of rates based on frame success rate and computed
throughput. These two algorithms form the basis for others
examined later in the paper.

Other algorithms attempt to predict the rate based on direct
measurements of the signal level at either the transmitter or
receiver [3], [4]. Unfortunately, these solutions often require
changes to the MAC layer, or expensive low-bitrate broadcast
packets.

Recently, loss differentiation has emerged as a promising
improvement to frame-loss based algorithms, particularlyin
congested networks. As these also usually require changes to
the 802.11 specifications [5], [6], or modifications to physical
hardware [7], uptake of these algorithms in deployed systems
has been slow. Consequently, it is instructive to study the
algorithms currently in wide use in 802.11 LANs.

Simulation of rate algorithms has typically been performed
using network simulators, such as ns2, originally developed for
wired networks. While these systems work well for comparing
different algorithms under controlled circumstances, by their
nature it is difficult to compare experimental results with
real-world trials. Moreover, simulations from the literature
often fail to account for cross-layer effects that would impact
practical implementations, such as routing delays, and TCP
timeouts.

One observation is that a simulator may account for cross-
layer effects implicitly, by directly using the networkingstack
of the operating system. One prior attempt to bridge the gap
between research simulators and deployed systems is given
in [8]. The authors present the librarylibmac, which allows
experimenters to capture and inject frames using modified
802.11 device drivers. This system utilizes physical radios for
packet collection and transport. For simulation purposes,it
would be advantageous to instead use virtual radios and model
the medium.

Thus, this paper introduces a simulator based on a virtu-
alized 802.11 device driver, using the LinuxMac80211 [9]
wireless stack. In addition to capturing cross-layer effects, the
proposed simulator provides the ability to directly compare
experiments utilizing virtual devices with those from physical
devices. This simulator is then used in an investigation of rate
adaptation algorithms used in the Linux operating system.

Section III describes the assumptions made about the net-
work and typical hardware devices. In section IV, the rate
algorithms are briefly described. Section V formulates the
channel models used in simulation. In section VI, a new
802.11 simulator that utilizes the Linux wireless stack is
presented. In section VII, the rate algorithms are compared
both in the simulator and in real world experiments. Finally,
in section VIII, modifications to the Minstrel algorithm are
proposed.

II. D IFFERENCES FROMPREVIOUS WORK

In this paper, three rate adaptation algorithms are examined:
Minstrel, PID, and AARF [10]. AARF has been presented and
reviewed in the literature, as has SampleRate [11], the prede-
cessor of Minstrel. Yet, the author is unaware of published
comparisons of Minstrel and PID, the two rate adaptation
algorithms presently available in the Linux kernel 2.6.32.

Simulations of rate adaptation algorithms have previously
been carried out in network simulators with the same or
similar channel models as those used in this work. The
cross-layer accuracy of such simulations relies in some part
on the accuracy of models of other network layers. A new
simulator is introduced that models only the 802.11 device
and wireless medium while using the existing infrastructure
for the remaining layers.

The virtual wireless device drivermac80211_hwsim ex-
isted prior to this project for testingMac80211. In its more
limited role as an API testing tool, the driver performed only

TABLE I: 802.11a Rate Set
Rate (Mbps) Modulation Coding Rate Bits per OFDM symbol

6 BPSK 1/2 48
9 BPSK 3/4 48
12 QPSK 1/2 96
18 QPSK 3/4 96
24 16-QAM 1/2 192
36 16-QAM 3/4 192
48 64-QAM 2/3 288
54 64-QAM 3/4 288

basic operations and did not attempt to simulate the wireless
medium. This kernel driver was rewritten to pass frames to
user programs to ease development of the channel simulator.

III. N ETWORK MODEL

For this paper, the 802.11a PHY is used as the basis for
experimentation. The newest standard, 802.11n, has recently
been approved and provides 32 additional rates; however, the
Linux rate adaptation API for 802.11n rates is still evolving
at this time. The 802.11a rate set (Table I) is still in use as
part of 802.11g, and provides a variety of speeds.

In addition, this paper is primarily interested in applications
to small infrastructure networks. In ad-hoc and mesh systems,
both the range of the network and number of nodes is often
large. As a result, rates that work over long distances may
be preferred to high throughput, short range rates. Also, in
large networks, hidden terminals are common, leading to the
frequent use of low-bitrate RTS/CTS protection.

A trend in consumer-oriented 802.11 hardware is the in-
creasing use of so-called soft-MAC designs: devices consisting
primarily of radios and small embedded CPUs where most of
the 802.11 MAC Layer Management Entity (MLME) features
are performed off-chip by the host computer. These designs are
low cost and have the advantage of being software-updateable.
Such designs often omit explicit rate control features, relying
on the host to provide a rate or a set of candidate rates for a
frame. A typical design is the Atheros 5212, in which each
frame is accompanied by a multi-rate retry (MRR) descriptor.
The descriptor consists of four candidate rates,r1, r2, r3, r4,
along with a set of retry counts,c1, c2, c3, c4. The device will
attempt to transmit a framec1 times at rater1, thenc2 times
at r2, etc., until the retry counts are exhausted or until an ACK
is received. The simulator assumes a similar design.

IV. RATE ALGORITHMS

ARF [12] is among the earliest developed automatic rate
selection algorithms. In ARF, if packets are transmitted suc-
cessfully a fixed number of times, then the rate is raised. If
there is a frame loss immediately after a rate change, or if
there are two consecutive failures, the rate is lowered. Adaptive
Auto-Rate Fallback (AARF) [10] utilizes the basic results
of ARF, but adds the notion of an exponentially increasing
threshold for raising the rate. This is intended to correct
the observed problem that the periodic failed transmission
attempts at higher rates led to decreased overall throughput.

Minstrel, based on [2], takes a probabilistic approach. Ten
percent of sent frames include a random probe rate as the first
rate in the MRR chain. Success at each rate is recorded as
packets are sent. Every 100 ms, the probabilities of success
and computed throughput are updated for all packets, and these
are combined with previous results using an exponentially
weighted moving average. The MRR descriptor includes the
two best throughputs followed by the best probability rate,
then followed by the lowest available rate. The MRR retry
counts are selected such that transmissions at a given rate for
all attempts should take no more than 6 ms, and the entire
transmission takes less than 24 ms.

PID is based on the concept of the proportional-integral-
derivative feedback controller [13]. The algorithm adjusts the
transmission rate to achieve a maximum of 14% transmission
failures. Every 125 ms, the controller recomputes the average
number of failed transmissions with an exponentially weighted
moving average. If a large amount of frame loss is detected,
the controller can enter a sharpening mode, in which large
adjustments to the rate can be made to more quickly approach
the targeted success percentage.

V. CHANNEL MODELS

To characterize performance of rate scaling algorithms, this
paper examines adaptability in both a slowly changing channel
and a channel undergoing small-scale fading. For the former,
channels are assumed to be additive white Gaussian noise
(AWGN), for the latter a Rayleigh distribution is used. In all
experiments, the following assumptions are made:

• Bit errors are independent
• Errors between symbols are independent
• Error correction utilizes hard decision boundaries
• Gray-coding is used for QAM points

In reality, bit errors have a bursty nature which cannot be fully
corrected by techniques such as bit interleaving. However,
error independence greatly simplifies bit error probability
computations and is a common assumption from the literature.

Symbol error independence is provided by OFDM: due to
separation in the frequency spectrum, errors on one subcarrier
typically do not impact symbols on another. 802.11 devices
employ soft detectors for error correction, which have been
shown to perform better than hard decision boundaries [14].
Hard detectors, however, represent a worst-case scenario and
are consequently useful for upper error bounds. Finally, the
802.11a QAM constellations are in fact gray-coded for in-
creased resiliency in the decoder. This yields a useful approxi-
mation for the bit error rate given the symbol error rate (Eq.3).

As none of the rate control algorithms examined in this
paper directly use channel characteristics for prediction, inac-
curacies in the channel model do not have a large effect on
results.

The theoretical symbol error rates for BPSK and M-QAM
(including QPSK) can be computed as follows [15]:

PBPSK =
1

2
erfc

(

√

Es

N0

)

(1)

PM−QAM = 2

[

1 −
1

√
M

erfc

(
√

3

2(M − 1)

Es

N0

)

−
(

1 −
2

√
M

+
1

M

)

erfc2
(

3

2(M − 1)

Es

N0

)]

(2)

When gray-coding is used, the bit error probability for M-
QAM can be approximated by

BER ≈
1

lg M
PM−QAM (3)

A computation of an upper bound for packet error probabil-
ity when using binary convolutional codes for forward error
correction with hard decision boundaries is computed as [16]:

PPER ≤ 1 − (1 − Pu(m))L (4)

Here, m is the modulation used andL is the number of
bits in a frame.Pu is the union bound of the first event error
probability, given by:

Pu(m) =
∞
∑

d=dfree

adPd(m) (5)

In this equation,dfree is the free distance of the convo-
lutional code, andad is the total number of codewords with
Hamming distanced from the correct codeword. Bothdfree

and the first 20 values ofad have been precomputed for
different convolutional codes in [17].Pd is the probability of
any incorrect path with Hamming distanced from the correct
path, and is computed as [1]:

Pd(m) =

d
∑

k=(d+1)/2

(

d

k

)

ρk(1 − ρ)d−k if d is odd,

1

2

(

d

d/2

)

ρd/2(1 − ρ)d−d/2 +

d
∑

k=d/2+1

(

d

k

)

ρk(1 − ρ)d−k if d is even.

(6)

Here, ρ is the bit error rate computed for the appropriate
modulation using eq. (1)-(3).

Together, eqs. (1-6) were implemented in Matlab to produce
curves of throughput versus signal-to-noise ratio. The results
(Fig. 1) are in agreement with those produced in [18]. These
computed curves are used by the simulator to probabilistically
drop packets according to a given SNR. Curves for packet
lengths of 1500 and 100 octets were generated, allowing
higher success probabilities for short packets such as 802.11
management frames.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

N
om

in
al

 T
hr

ou
gh

pu
t (

M
bp

s)

SNR (dB)

54 Mbit
48 Mbit
36 Mbit
24 Mbit
18 Mbit
12 Mbit
9 Mbit
6 Mbit

Fig. 1: Theoretical performance of 802.11a rates, 1500-byte
frames

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
N

R
 (

dB
)

Time (s)

Fig. 2: Rayleigh fading withfc = 5.0 GHz,v=1 m/s

To assess performance in small-scale fading, a modified
Jakes model is used to simulate Rayleigh fading [19]. In this
model, the small-scale loss due to fading is computed as a sum
of sinusoids, each representingN rays arriving from different
angles to a moving receiver.

ωn =
2πfcv

N
cos(αn) (7)

T (t) =

√

(

2

N0

) N0
∑

n=1

[cos(βn) + jsin(βn)]cos(ωnt + θn)

(8)

N0 is N/4, and the angles areαn = 2π(n − 0.5)/n and
βn = πn/N0, with normally-distributed phaseθn. This model
was implemented in Matlab, producing the waveform in Fig. 2.

VI. M AC80211 SIMULATOR

A significant part of this exercise is the creation of a plat-
form for experimentation inside the Linux operating system.

wlan0 (virt) wlan1 (virt)

mac80211_hwsim

Mac80211

IP / Networking

tx rx

tx_statusread write

Simulator

Kernel

User

Fig. 3: Mac80211 Simulator Architecture

The 802.11 implementation in Linux is known asMac80211,
a software MAC layer used by soft-MAC wireless devices.

A diagram of the simulator architecture is given in figure 3.
The simulator consists of a user-space program and the

mac80211_hwsim kernel device driver. The driver maintains
a queue of packets that are to be sent on a given virtual
device. When the simulation program opens a special control
device file, two virtual network devices are created, and a file
descriptor is allocated for each device. Reading from one file
descriptor returns any frame that the virtual device has to send,
and writing a frame to a file descriptor results in a successful
reception of the frame by that virtual device. The simulator
reports success or transmission failure of a given frame by
way of an ioctl system call; these results are fed back into
the rate selection algorithms by mac80211. Any number of
wireless stations can be simulated by chaining devices, though
the present exercise only creates a pair of stations.

The user-space program simulates the wireless medium by
reading frames from both descriptors and probabilistically
dropping frames as they are written to the other descriptor.
For a given frame, the simulator will:

• Compute the probability of error-free transmission at the
given bitrate, packet length, and signal level.

• Randomly discard the frame according to the probability
from step 1.

• Repeat steps 1-2 for each available bitrate and retry count,
until the frame has been successfully sent, or all retries
have been exhausted.

• Delay according to the total frame transmission time.
• Write the frame to the other virtual device in the case of

successful transmission.
• Output the effective instantaneous rate.

The total transmission time of a data frame in the 802.11
distributed coordination function (DCF) is composed of the
DCF interframe space (DIFS), a contention window backoff
cw, the frame transmission timetf , and the ACK transmission
time, ta. Values for the 802.11a OFDM PHY are given in
table II [20].

TABLE II: 802.11 OFDM PHY Parameters
Parameter Value

Slot time (tslot) 9 µs
SIFS 16 µs
DIFS 2 × tslot + SIFS = 18 + 16 = 34 µs
CWmin 15× tslot = 135 µs
CWmax 1023× tslot = 9207 µs

The number of OFDM symbols for a packet ofL bits at
bitrateb is computed as follows:

NDBPS(b) = 4b (9)

NSY M (L, b) =

⌈

Lservice + L + Lpad

NDBPS

⌉

(10)

=

⌈

16 + L + 6

NDBPS

⌉

(11)

NDBPS is the number of data bits per OFDM symbol,
Lservice is the length of the PLCP service header (16 bits), and
Lpad is the length of padding (6 bits). The total frame trans-
mission time is the symbol transmission time (tSY M = 4µs)
times the number of symbols, plus the time required to send
the PLCP preamble (16µs) and the PLCP signal header (4µs):

tf (L, b) = 16 + 4 + tSY M × NSY M (L, b) (12)

The ACK transmission time includes the short interframe
space plus the time to send a 14 octet packet:

ta(b) = SIFS + tf ((14)(8), b) (13)

Thus, the full time to transmit a packet is the sum of
transmission times for each attempti, and the ACK at the
final bitrate, if applicable:

t = ta(bn) +
∑

i

cwi + tfi
(L, bi) + DIFS (14)

The backoff parametercwi is a uniform random variable
on the interval[0, CW], whereCW begins atCWmin and
exponentially increases for each retransmission until reaching
CWmax. For repeatable results, the simulator instead uses the
expectationE[cwi] = CW/2.

When simulating real-time behavior (for example, to test
cross-layer TCP throughput), the simulator will delay for
a time of t µs for each frame transmission. To validate
this model, average TCP throughput was measured using the
iperf utility: each rate was tested for 60 seconds, first with
the simulator and then with a physical device. The results are
given in table III.

As exponential backoff has a large impact on the total trans-
mission time, it is useful to consider not just the successful
rate, but the time of failed retries. For that purpose, this paper
measures aneffective instantaneous rate, which is simply the
length in bits of a frame divided by the complete transmission
time.

TABLE III: TCP Throughput for 802.11 bitrates
Rate (Mbps) Simulated TCP (Mbps) Measured TCP (Mbps)

54 21.7 20.6
48 18.8 19.6
36 16.4 16.9
24 13.9 13.0
18 11.4 10.4
12 8.4 7.99
9 6.68 6.39
6 4.77 4.07

VII. A NALYSIS OF RATE ADAPTATION ALGORITHMS

In order to evaluate rate adaptation algorithms, two virtual
devices are created with the simulator and separated into
distinct network namespaces. Thehostapd access point
software is attached to one virtual device, while the other
device associates with it. Theiperf utility is used to generate
TCP traffic from the STA to the AP.

As an initial experiment, each rate adaptation algorithm is
evaluated for basic fitness over a slowly degenerating AWGN
channel. The channel initially has an SNR of 30 dB for a
warm-up period of five seconds, then decreases by .05 dB
every second. The effective instantaneous rates of all frames
are computed, including backoff penalties for retransmissions.
For comparison, an idealized rate controller which always
picks the rate with highest throughput and zero retransmissions
is also simulated (Fig. 4).

Minstrel proves most adept in this simple scenario, perform-
ing close to the ideal and outperforming PID and AARF by
a large margin. Loss rate with PID was very high, causing
iperf to stall, and leading to eventual disassociation from
the AP by theMac80211 connection watchdog. Investigation
revealed several problems with this implementation:

• PID lacks MRR, so any attempt at sending at an inap-
propriate rate usually results in a packet drop after the
initial retries are exhausted

• Frame success is improperly accounted, leading to an
under-estimated error rate

• Due to a sign error in fixed-point math, attempts to correct
the error term are sometimes made in the wrong direction,
destabilizing the algorithm

As a result of these issues, the algorithm selects a much higher
rate than it should, resulting in many drops and very poor
or no throughput. These issues have been corrected in the
algorithmModified-PID. The modified algorithm still exhibits
a high degree of variation in the rates chosen.

AARF under-performs in the presence of packet loss. There
were two reasons for this: first, any two consecutive packet
losses results in a decrease in the rate. If these losses are
coincidental but the overall probability of success on the rate is
still good, AARF will lower the rate prematurely. In a physical
system, such bursty errors are to be expected. Secondly, in a
SoftMAC design, there is large latency between determination
of a rate and processing of the first frame that used that rate.If
a determination is made to raise the rate, then packets already
queued will utilize the old rate, and some number of packets

TABLE IV: Sample MRR descriptors
Entry AARF Minstrel

rate count rate count

1 24 1 24 8
2 18 1 18 3
3 12 1 24 8
4 6 11 6 3

will be queued at the new rate before the first frame at the new
rate has been transferred. The result is rate oscillation ofthe
sort described in [10]. Between 16 and 20 dB, for example,
AARF oscillated between the 36 Mbps and 48 Mbps rate, with
the first attempt at 48 Mbps usually failing.

In Fig. 5, TCP throughput for the same experiment is given.
As time progresses and SNR decreases, both Minstrel and
AARF maintain good overall throughput. Modified-PID can
only manage about 5 Mbps below 20 dB. An interesting arti-
fact is the presence of huge loss spikes around rate transitions
with Minstrel. Conversely, AARF is much more consistent. As
will be seen in the next experiment, differences in the MRR
descriptor are a likely cause.

To measure performance in small-scale fading situations,
each algorithm was tested for one minute in a simulated
Rayleigh channel with a maximum Doppler shift of 16.6 Hz
at 5.0 GHz (Fig. 6). Here, AARF outperforms both Minstrel
and PID, managing 11.5 Mbps compared to Minstrel’s 7.05
Mbps and PID’s 7.28 Mbps. Fig. 7 illustrates the cause for the
discrepancy. At timet = 6.83, both algorithms have selected
the 24 Mbit rate, and both experience a deep fade. However,
AARF has many fewer retries in the MRR descriptor compared
to Minstrel (Table IV).

AARF succeeds on the second attempt at 18 Mbits, while
Minstrel attempts 24 Mbits eight times in a row, and finally
succeeds at 18 Mbits. Including backoff, the retries take nearly
20 ms, time during which AARF is able to send 20 additional
packets. At timet = 6.86, Minstrel unsuccessfully sends a
probe for the 54 Mbps rate, and this is followed by excessive
retries for two more packets. While a single retry per rate
may be too low for some realistic scenarios, this experiment
demonstrates the importance of backoff in determining overall
throughput.

In order to compare these results to performance with actual
radios, each algorithm was tested withiperf at distances
of 0.5, 5, and 10 meters for one minute, for three trials at
each distance. The transmitter is an Atheros AR2417 running
Linux 2.6.32.3 with the ath5k driver, and the AP is an RaLink
RT2561 runninghostapd on Linux 2.6.30.5 with the rt61
driver. A single trial is representative of the others and is
plotted in Fig. 8. In Fig. 9, mean and standard deviation of
each rate algorithm is given for different distances.

In this test, no single algorithm has a large performance
advantage over the others. At 0.5 meters, the radio can
transmit successfully at 54 Mbps, so it is expected that all will
perform reasonably well. At five meters, some packets can be
periodically sent at high bitrates, but loss is frequent, leading
to large-scale oscillations seen by all rate algorithms. Atten

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bp
s)

SNR (dB)

minstrel
aarf
pid

modified-pid
ideal

Fig. 4: Effective rate of rate control algorithms

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600

T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (s)

minstrel
aarf
pid

modified-pid

Fig. 5: TCP throughput of rate control algorithms

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

S
N

R
 (

dB
)

Time (s)

minstrel
aarf

pid
modified-pid

Fig. 6: TCP throughput in Rayleigh fading channel

meters, AARF slightly outperforms Minstrel, but variance is

 0
 5

 10
 15
 20
 25
 30

 6.8 6.82 6.84 6.86 6.88 6.9

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

 0
 20
 40
 60
 80

 100
 120
 140
 160

 6.8 6.82 6.84 6.86 6.88 6.9D
at

a
T

ra
ns

fe
rr

ed
 (

K
b)

Time (s)

minstrel
aarf

Fig. 7: Impact of excessive retries on throughput

 12
 14
 16
 18
 20
 22
 24

 0 10 20 30 40 50 60

T
C

P
 (

M
bp

s)
Time (s)

aarf
minstrel

modified-pid

 0 2
 4 6
 8 10 12 14 16 18 20 22

 0 10 20 30 40 50 60

T
C

P
 (

M
bp

s)

Time (s)

 0 2
 4 6
 8 10 12 14

 0 10 20 30 40 50 60

T
C

P
 (

M
bp

s)

Time (s)

Fig. 8: TCP performance, physical radios(d = .5, 5, 10m)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2 4 6 8 10

A
vg

 T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

Distance (m)

aarf
minstrel

modified-pid

Fig. 9: Mean TCP performance with physical radios

quite large in these measurements.

 5

 6

 7

 8

 9

 10

 11

 12

 0 10 20 30 40 50 60

T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (s)

minstrel modified-minstrel

Fig. 10: Simulated performance of modified Minstrel

TABLE V: Experimental TCP throughput with Minstrel
(Mbps)

Test Minstrel Modified-Minstrel

Simulated 6.154 9.867
Physical 8.01 8.93

VIII. P ROPOSEDMODIFICATIONS

The simulations show that Minstrel is a well-performing
algorithm in general, producing results close to the ideal in
good conditions. However, the large retransmission penalty in
802.11 reduces its potential throughput in instances of greater
loss. Consequently, a reduction in the number of retries is
likely to improve the overall throughput achieved by Minstrel.
The existing transmission time estimate takes into account
backoff, but this value is reset for every MRR slot. Thus, the
following changes have been made to the algorithm:

• The transmission time estimate is computed as the MRR
slots are created, ensuring backoff time for the second
slot depends on that of the first.

• The best throughput and best probability rate are not
repeated in the MRR slots if they are the same. Instead,
the next best rate is used in this case.

These changes were implemented in Minstrel, resulting
in Fig.10 (simulated) and Fig.11 (physical). In the physical
experiment, throughput was tested withiperf for 5 minutes
at a distance ofd = 7m. In all other respects, the experimental
setup from the previous section was used. The results are in
table V. In simulation, a consistent improvement of 60.5% was
seen, but there was little performance difference with actual
hardware.

IX. CONCLUSIONS ANDFUTURE WORK

In this paper, a novel 802.11 simulator has been presented
that provides experimenters with an easy way to leverage
the existing operating system stack and user-space software
present on the Linux platform. The simulator has been demon-
strated by examining rate adaptation algorithms currentlyused

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

A
vg

 T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (s)

minstrel
modified-minstrel

Fig. 11: Physical performance of modified Minstrel

in Linux under different channel models. In the process, defi-
ciencies were found in the existing rate adaptation algorithms
and modifications proposed. MAC layer collision avoidance
backoff was experimentally shown to play a key role in the
achievable network throughput.

Although simulated results proved difficult to replicate in
real-world testing, it is felt that better testing conditions would
help this problem. For example, running experiments in a
radio-controlled environment such as the ORBIT [8] testbed
will likely be instructive. The ability to run experiments on
both virtualized and non-virtualized hardware in ORBIT nodes
could prove useful in developing accurate wireless models.

Potential avenues for future work include expanding the
simulator to support scriptable topologies from existing sim-
ulators; developing and adding more complete channel mod-
els; and making more aspects of the networking stack user-
controllable. Rate adaptation continues to be heavily studied
in 802.11, particularly as 802.11n brings many new rates.
With 802.11n, sampling algorithms like Minstrel will need
to manage a much larger probability matrix, while ensuring
that probes and retransmissions do not overly reduce through-
put. Cross-layer validation of 802.11n-aware rate adaptation
algorithms will likely be important as existing algorithmsare
adapted.

REFERENCES

[1] D. Qiao and S. Choi, “Goodput enhancement of IEEE 802.11 a wireless
LAN via link adaptation,” inProc. IEEE ICC01, vol. 7. Citeseer, 2001,
pp. 1995–2000.

[2] J. Bicket, “Bit-rate selection in wireless networks,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2005.

[3] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive MAC protocol
for multi-hop wireless networks,” inProceedings of the 7th annual
international conference on Mobile computing and networking. ACM
New York, NY, USA, 2001, pp. 236–251.

[4] G. Judd, X. Wang, and P. Steenkiste, “Efficient channel-aware rate
adaptation in dynamic environments,” inMobiSys ’08: Proceeding of
the 6th international conference on Mobile systems, applications, and
services. New York, NY, USA: ACM, 2008, pp. 118–131.

[5] CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs, April
2007.

[6] S. Rayanchu, A. Mishra, D. Agrawal, S. Saha, and S. Banerjee, “Diag-
nosing wireless packet losses in 802.11: Separating collision from weak
signal,” in IEEE INFOCOM 2008. The 27th Conference on Computer
Communications, 2008, pp. 735–743.

[7] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer wireless
bit rate adaptation,” inSIGCOMM ’09: Proceedings of the ACM SIG-
COMM 2009 conference on Data communication. New York, NY,
USA: ACM, 2009, pp. 3–14.

[8] K. Ramachandran, H. Kremo, M. Gruteser, P. Spasojevic, andI. Seskar,
“Scalability analysis of rate adaptation techniques in congested ieee
802.11 networks: An orbit testbed comparative study,” inIEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks, 2007. WoWMoM 2007, 2007, pp. 1–12.

[9] “Mac80211,” http://linuxwireless.org/.
[10] M. Lacage, M. Manshaei, and T. Turletti, “IEEE 802.11 rate adaptation:

a practical approach,” inProceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wirelessand mobile
systems. ACM New York, NY, USA, 2004, pp. 126–134.

[11] Y. Yang, M. Marina, and R. Bagrodia, “Experimental evaluation of
application performance with 802.11 PHY rate adaptation mechanisms
in diverse environments,”Proc. WCNC06, pp. 2273–2278.

[12] A. Kamerman and L. Monteban, “WaveLAN-II: A high-performance
wireless LAN for the unlicensed band,”Bell Labs Technical Journal,
vol. 2, no. 3, pp. 118–133, August 1997.

[13] M. Willis, “Proportional-Integral-Derivative Control,” Department of
Chemical and Process Engineering, University of Newcastle, 1999.

[14] A. Assalini, M. Trivellato, and S. Pupolin, “Performance analysis of
OFDM-OQAM systems.”

[15] J. Proakis, Digital Communications, 4th ed. McGraw-Hill Sci-
ence/Engineering/Math, August 2000.

[16] M. Pursley and D. Taipale, “Error probabilities for spread-spectrum
packet radio with convolutional codes and Viterbi decoding,” Commu-
nications, IEEE Transactions on [legacy, pre-1988], vol. 35, no. 1, pp.
1–12, 1987.

[17] P. Frenger, P. Orten, T. Ottosson, and A. Svensson, “Multi-rate convo-
lutional codes,” 1998.

[18] M. Manshaei and T. Turletti, “Simulation-based performance analysis
of 802.11 a wireless LAN,” inProc. International Symposium on
Telecommunications (IST03). Citeseer.

[19] P. Dent, G. Bottomley, and T. Croft, “Jakes fading model revisited,”
Electronics Letters, vol. 29, no. 13, pp. 1162–1163, 1993.

[20] “IEEE 802.11-2007, Wireless LAN Medium Access Control(MAC) and
Physical Layer (PHY) Specifications,” June 2007.

